CFIN ${ }^{5}$

CORPORATE FINANCE

Chapter 4

 Time Value OF Money
Learning Outcomes

LO. 1 Identify various types of cash flow patterns (streams) seen in business.
LO. 2 Compute the future value of different cash flow streams. Explain the results.
LO. 3 Compute the present value of different cash flow streams. Explain the results.

LO. 4 Compute (a) the return (interest rate) on an investment (loan) and (b) how long it takes to reach a financial goal.

Learning Outcomes (cont.)

LO. 5 Explain the difference between the Annual Percentage Rate (APR) and the Effective Annual Rate (EAR). Explain when it is appropriate to use each.
LO. 6 Describe an amortized loan. Compute (a) amortized loan payments and (b) the amount that must be paid on an amortized loan at a specific date during the life of the loan.

Time Value of Money (TVM)

- The principles and computations used to revalue cash payoffs from different times so they are stated in dollars of the same time period.
- Dollar amounts from different time periods should never be compared; rather, amounts should be compared only when they are stated in dollars at the same point in time, such as December 31 of a particular year.
- Dollars from different time periods have opportunities to earn different amounts (numbers of periods) of interest (return).

Time Value of Money (TVM)

o At a 10 percent opportunity cost rate, which is better, receiving $\$ 700$ today or receiving $\$ 935$ in three years?

Time Value of Money (TVM)

o To answer the question, we must revalue the cash payoffs so they are stated in dollars at the same time period.

Year (n):
Cash flows:

$$
\text { Option A: } \mathrm{PV}_{\mathrm{A}}=\$ 700 \xrightarrow[\mathrm{FV} \text { amount by adding interest. }]{\text { Translate the curent } \$ 700 \text { into an }} ?=\mathrm{FV}_{\mathrm{A} 3}
$$

OR

Option B: $\mathrm{PV}_{\mathrm{B}}=\quad ? \stackrel{\text { Translate the future } \$ 935 \text { into a }}{\mathrm{PV} \text { amount by taking out interest. }} \$ 935=\mathrm{FV}_{\mathrm{B} 3}$

Cash Flow Time Lines

Graphical representations used to show timing of cash flows

PV = Present Value-the beginning amount that can be invested (current value of some future amount).
FV = Future Value-the value to which an amount invested today will grow at the end of n periods at an opportunity cost rate equal to r.

Types of Cash Flow Patterns

- Lump Sum Amount-a single payment (received or made) that occurs either today or at some date in the future.
- Annuity-multiple payments of the same amount over equal time periods.
- Uneven Cash Flows-multiple payments of different amounts over a period of time.

Future Value

o Compounding-to compute the future value of an amount we push forward the current amount by adding interest for each period in which the money can earn interest in the future.

$$
\mathrm{PV}_{\mathrm{A}}=700.00 \xrightarrow{\stackrel{\mathrm{r}}{\mathrm{x}=10 \%} \stackrel{1}{\stackrel{2}{4}} 770.00 \xrightarrow{\mathrm{x} 1.10} 847.00 \xrightarrow{\mathrm{x} 1.10} 931.70}=\mathrm{FV}_{3}
$$

Future Value of a Lump-Sum Amount FV

$$
F V_{n}=P V(1+r)^{n}
$$

Four Ways to Solve Time Value of Money Problems

- Use a cash flow timeline
 - Use an equation
 - Use a financial calculator
 - Use a spreadsheet

Free \& Low Cost Excel Tutorial Options

ohttp://www.gcflearnfree.org/
ohttp://excelcentral.com/excel2013/basic/samplefile smenu.aspx
ohttps://excelexposure.com/

FV ${ }_{n}$ Timeline Solution

- The Future Value of $\$ 700$ invested at 10% per year for three (3) years

$$
\mathrm{PV}_{\mathrm{A}}=700.00 \xrightarrow{\stackrel{\mathrm{r}}{\mathrm{x}=1.10}+\stackrel{1}{\longmapsto} 770.00 \xrightarrow{\times 1.10} 847.00 \xrightarrow{\mathrm{x} 1.10} 931.70}=\mathrm{FV}_{3}
$$

FV_{n} Equation Solution

$$
F V_{n}=P V(1+r)^{n}
$$

$=\$ 700(1.10)^{3}$
$=\$ 700(1.33100)$
$=\$ 931.70$

FV ${ }_{\mathrm{n}}$ Financial Calculator Solution

\section*{Inputs:
 10 I/Y

 Output:
 | 0 | $?$ |
| :---: | :---: |
| PMT | FV |
| | $=931.70$ |}

FV ${ }_{\text {n }}$ Spreadsheet SolutionMS Excel

- Set up a table that contains the data used to solve the problem.
- Click f_{x} and choose the FV function.
- Click the cells containing the appropriate data to enter the data into the FV function.
- Calculate the answer.

FV ${ }_{\text {n }}$ Spreadsheet SolutionMS Excel (cont.)

Future Value of an Annuity-FVA

o Annuity-a series of payments of equal amounts at fixed intervals for a specified number of periods.

- Ordinary (deferred) Annuity-an annuity whose payments occur at the end of each period.
- Annuity Due—an annuity whose payments occur at the beginning of each period.

What's the FV of a Three-year Ordinary Annuity of $\$ 400$ at 5\%?

$\mathrm{FVA}_{\mathrm{n}}$ Equation Solution

$$
\begin{aligned}
\mathrm{FVA}_{n} & =\operatorname{PMT}\left[(1+r)^{n-1}+(1+r)^{n-2}+\cdots+(1+r)^{0}\right] \\
& =\operatorname{PMT} \sum_{0}^{n-1}(1+r)^{t} \\
& =\operatorname{PMT}\left[\frac{(1+r)^{n}-1}{r}\right]
\end{aligned}
$$

FVA ${ }_{n}$ Equation Solution (cont.)

$$
\begin{aligned}
\mathrm{FVA}_{3} & =400\left[\frac{(105)^{3}-1}{0.05}\right] \\
& =400(3.1525) \\
& =1,261.00
\end{aligned}
$$

FV of an Annuity Due-FVA(DUE) ${ }_{n}$

FVA(DUE) $)_{n}$ Equation Solution

$$
\begin{aligned}
\operatorname{FVA}(D U E)_{n} & =\operatorname{PMT}\left[(1+r)^{n}+(1+r)^{n-1}+\cdots+(1+r)^{1}\right] \\
& =\operatorname{PMT} \sum_{0}^{n-1}(1+r)^{t}(1+r) \\
& =\operatorname{PMT}\left\{\left[\frac{(1+r)^{n}-1}{r}\right](1+r)\right\}
\end{aligned}
$$

FVA(DUE) ${ }_{n}$ Equation Solution

$$
\begin{aligned}
\mathrm{FVA}_{(\mathrm{DUE})_{3}} & =400\left\{\left[\frac{(105)^{3}-1}{0.05}\right](1.05)\right\} \\
& =400\{(3.1525)(1.05)\} \\
& =400(3.310125) \\
& =1,324.05
\end{aligned}
$$

Cash Flow Streams

- Payment (PMT) designates constant cash flows-that is, an annuity stream.
- Cash flow (CF) designates cash flows in general, both constant cash flows (i.e., annuities) and uneven cash flows.

Find the FV of an Uneven Cash Flow Stream-FVCF

$$
0 \text { r=5\% 1, 2 }
$$

$\mathrm{FVCF}_{\mathrm{n}}$ Equation Solution

$$
\begin{aligned}
\mathrm{FVCF}_{\mathrm{n}} & =\mathrm{CF}_{1}(1+r)^{n-1}+\cdots+C F_{n}(1+r)^{0} \\
& =\sum_{t=1}^{n} C F_{t}(1+r)^{n-t}
\end{aligned}
$$

$\mathrm{FVCF}_{\mathrm{n}}$ Equation Solution

$$
\begin{aligned}
\mathrm{FVCF}_{3} & =400(1.05)^{2}+300(1.05)^{1}+250(1.05)^{0} \\
& =400(1.1025)+300(1.0500)+250(1.0000) \\
& =441.00+315.00+250.00 \\
& =1,006.00
\end{aligned}
$$

Present Value

o Present value is the value today of a future cash flow or series of cash flows.
o Discounting is the process of finding the present value of a future cash flow or series of future cash flows
o Finding the present value (discounting) is the reverse of finding the future value (compounding).

Present Value-PV

- Discounting-to compute the present value of an amount we bring back to the present a future amount by taking out interest for each period in which the money can earn interest in the future.

Present Value of a Lump-Sum Amount PV

$$
P V=\frac{F V_{n}}{(1+r)^{n}}=F V_{n}\left[\frac{1}{(1+r)^{n}}\right]
$$

Present Value of a Lump-Sum Amount PV

What is the PV of $\$ 935$ due in Three (3) years if $r=10 \%$?

$$
\begin{aligned}
\mathrm{PV} & =935\left[\frac{1}{(1.10)^{3}}\right] \\
& =935(0.751314801) \\
& =702.48
\end{aligned}
$$

Present Value of an Annuity
(Ordinary)-PVA

- $\mathrm{PVA}_{n}=$ the present value of an annuity with n payments.
o Each payment is discounted, and the sum of the discounted payments is the present value of the annuity.

PVA_{n} Cash Flow Solution

What is the PV of a three-year \$400 ordinary annuity if $r=5 \%$?

$$
\begin{aligned}
& \text { Value of Each FV } 0 \\
& \text { Amount Today } \\
& \text { (Year 0) } \\
& 380.95 \\
& 362.81 \\
& \frac{1.05)^{2}}{} \times \\
& \frac{1}{(1.05)^{3}} \times \\
& 345.54 \\
& \underline{1,089.30}=\text { PVA }_{3}
\end{aligned}
$$

$P^{\prime} A_{n}$ Equation Solution

$$
\begin{aligned}
\operatorname{PVA}_{n} & =\operatorname{PMT}\left[\frac{1}{(1+r)^{1}}\right]+\ldots+\operatorname{PMT}\left[\frac{1}{(1+r)^{n}}\right] \\
& =\operatorname{PMT}\left[\sum_{t=1}^{n} \frac{1}{(1+r)^{t}}\right] \\
& =\operatorname{PMT}\left[\frac{1-\frac{1}{(1+r)^{n}}}{r}\right]
\end{aligned}
$$

PVA ${ }_{n}$ Equation Solution

$$
\begin{aligned}
\mathrm{PVA}_{3} & =400\left[\frac{1-\frac{1}{(1.05)^{3}}}{0.05}\right] \\
& =400(2.723248) \\
& =1,089.30
\end{aligned}
$$

Present Value of an Annuity Due-PVA(DUE) n

> PV of Each FV
> Amount Today
> (Year 0)
> $\underline{\underline{1,143.76}}=$ PVA(DUE) $)_{3}$

PVA(DUE) ${ }_{n}$ Equation Solution

$\operatorname{PVA}(D U E)_{n}=\operatorname{PMT}\left[\frac{1}{(1+r)^{0}}\right]+\ldots+\operatorname{PMT}\left[\frac{1}{(1+r)^{n-1}}\right]$

$$
=\operatorname{PMT}\left[\sum_{t=1}^{\mathrm{n}} \frac{1}{(1+r)^{\mathrm{t}}}\right](1+r)
$$

$$
=\operatorname{PMT}\left\{\left[\frac{1-\frac{1}{(1+r)^{n}}}{r}\right](1+r)\right\}
$$

PVA(DUE) $)_{n}$ Equation Solution

$$
\begin{aligned}
\operatorname{PVA}(\mathrm{DUE})_{3} & =400\left\{\left[\frac{1-\frac{1}{(1.05)^{3}}}{0.05}\right](1.05)\right\} \\
& =400\{(2.723248)(1.05)\} \\
& =1,143.76
\end{aligned}
$$

Perpetuities-PVP

- Streams of equal payments that are expected to go on forever

$P V P=P M T\left[\frac{1}{r}\right]=\frac{P M T}{r}$

Perpetuities—PVP

$$
\begin{aligned}
& \mathrm{PVP}_{1}=\frac{100}{0.05}=2,000 \\
& \mathrm{PVP}_{2}=\frac{100}{0.10}=1,000
\end{aligned}
$$

PV of an Uneven Cash Flow Stream-PVCF ${ }_{n}$

$\mathrm{PVCF}_{\mathrm{n}}$ Equation Solution

$$
\begin{aligned}
\mathrm{PVCF}_{\mathrm{n}} & =\mathrm{CF}_{1}\left[\frac{1}{(1+\mathrm{r})^{1}}\right]+\cdots+\mathrm{CF}_{\mathrm{n}}\left[\frac{1}{(1+\mathrm{r})^{n}}\right] \\
& =\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{CF}\left[\frac{1}{(1+\mathrm{r})^{\mathrm{t}}}\right]
\end{aligned}
$$

$\mathrm{PVCF}_{\mathrm{n}}$ Equation Solution

$$
\begin{aligned}
\mathrm{PVCF}_{3} & =400\left[\frac{1}{(1.05)^{1}}\right]+300\left[\frac{1}{(1.05)^{2}}\right]+250\left[\frac{1}{(1.05)^{3}}\right] \\
& =400(0.952381)+300(0.907029)+250(0.863838) \\
& =380.95+272.11+215.96
\end{aligned}
$$

$$
=869.02
$$

Comparison of FV with PV

o FV contains interest, whereas PV does not.
o At an opportunity cost rate of 10 percent:
a a lump-sum payment of $\$ 700$ today is the same as a lump-sum payment of $\$ 931.70$ in three years.

- The PV of \$700 has no interest; the FV of $\$ 931.70$ contains three years of interest, which equals $\$ 231.70$.

Comparison of FV with PV (cont.)

- The values given under the tick marks for each year differ only because they contain different amounts of interest.

Solving for Interest Rates (r)

- Suppose you pay $\$ 78.35$ for an investment that promises to pay you $\$ 100$ five years from today. What annual rate of return will you earn on your investment?

Solving for Time (n)

o A security that costs $\$ 68.30$ will provide a return of 10 percent per year. If you want to keep the investment until it grows to a value of $\$ 100$, how long will you have to keep it?

$$
\mathrm{PV}=-68.30 \mathrm{r}=10 \% \text { 1 }
$$

Semiannual and Other Compounding Periods

- Annual compounding is the process of determining the future value of a cash flow or series of cash flows when interest is earned (added) once per year.
- Semiannual compounding is the process of determining the future value of a cash flow or series of cash flows when interest is added twice per year.

FV of a lump sum

- The FV of a lump sum be larger if interest is compounded more often, holding the stated r constant? Why?
- If compounding is more frequent than once per year-for example, semi-annually, quarterly, or daily-interest is earned on interest-that is, compounded-more often.
- Compared to annual compounding, a greater amount of interest is earned when interest is compounded more than once per year.

Distinguishing Between Different Interest Rates

$\mathrm{r}_{\text {SIMPLE }}=$ Simple (Quoted) Rate used to compute the interest paid per period

$$
\text { APR }=\text { Annual Percentage Rate }=r_{\text {SIMPLE }}
$$

$r_{\text {EAR }}=$ Effective Annual Rate the annual rate of interest actually being earned

Comparison of Different Types of Interest Rates

- $r_{\text {SIMPLE }}$: Written into contracts, quoted by banks and brokers. Not used in calculations or shown on time lines.
- $r_{\text {PER }}$: Interest rate per period (e.g., per year, per month, etc.); used in calculations; shown on time lines.
- $r_{\text {EAR }}$: Used to compare returns on investments with different payments per year.

Simple (Quoted) Rate

or $r_{\text {SIMPLE }}$ is stated in contracts
Periods per year (m) must also be given

- Examples:
$\square 8 \%$, compounded quarterly
-8\%, compounded daily (365 days)

Periodic Rate, $r_{\text {PER }}$

- Periodic rate $=r_{\text {PER }}=r_{\text {SIMPLE }} / m$, where m is number of compounding periods per year; m
$=4$ for quarterly compounding, 12 for monthly compounding, and so forth.
- Examples:
- 8%, compounded quarterly: $r_{\text {PER }}=8 \% / 4=2 \%$
- 8%, compounded monthly: $r_{\text {PER }}=8 \% / 12=$ 0.667\%

Effective Annual Rate

o The annual rate that causes PV to grow to the same FV as it would with multi-period compounding.

$$
\begin{aligned}
\begin{aligned}
\text { Effective } \\
\text { Annual } \\
\text { Rate (EAR) }
\end{aligned} & =r_{\text {EAR }}
\end{aligned}=\left(1+\frac{r_{\text {SIMPLE }}}{m}\right)^{m}-1.00
$$

Computing $r_{\text {EAR }}$

- What is the effective annual return (EAR) for an investment that pays 12 percent interest, compounded monthly?

$$
\begin{aligned}
r_{\text {EAR }} & =\left(1+\frac{r_{\text {SIMPLE }}}{m}\right)^{m}-1.0 \\
& =\left(1+\frac{0.12}{12}\right)^{12}-1.0=(1.01)^{12}-1.0 \\
& =0.1268=12.68 \%
\end{aligned}
$$

Amortized Loans

- Amortized Loan-a loan that is repaid in equal payments over its life.
- A portion of the payment represents interest and the remainder represents repayment of the amount that was borrowed.
- Amortization schedules are widely used for home mortgages, auto loans, and so forth to determine how much of each payment represents principal repayment and how much represents interest.

Amortization schedule

- An amortization schedule for a $\$ 33,000,6.5$ percent loan that requires three equal annual payments.

$$
\begin{aligned}
& \text { Year } \stackrel{0}{\square} \underset{r=6.5 \%}{1} \quad 2 \\
& 15,000 \quad \mathrm{PMT}=? \quad \mathrm{PMT}=? \quad \mathrm{PMT}=\text { ? }
\end{aligned}
$$

Amortization Schedule

Year	Beginning of Year Balance (1)	Payment (2)	$\begin{gathered} \text { Interest } \\ \text { @ 6.5\% } \\ (3)=(1) \times 0.065 \\ \hline \end{gathered}$	Repayment of Principal $(4)=(2)-(3)$	Remaining Balance $(5)=(1)-(4)$
1	\$33,000.00	\$12,460	\$2,145.00	\$10,315.00	\$22,685.00
2	22,685.00	12,460	1,474.53	10,985.48	11,699.53
3	11,699.53	12,460	760.47	11,699.53	0.00

