BESLEY + BRIGHAM



CORPORATE FINANCE



CHAPTER 5 THE COST OF MONEY (INTEREST RATES)

### Learning Outcomes

- LO.1 Describe the cost of money and factors that affect the cost of money.
- LO.2 Describe how interest rates are determined.
- LO.3 Describe a yield curve and discuss how a yield curve might be used to forecast future interest rates.

## Learning Outcomes (cont.)

- LO.4 Discuss how government actions and general business activity affect interest rates.
- LO.5 Describe how changes in interest rates (returns) affect the values of stocks and bonds.

## Realized Returns (Yields)

 $Yield = \frac{Dollar return}{Beginning value} = \frac{Dollar income + Capital gains}{Beginning value}$ 

## Dollar income + (Ending value - Beginning value)

**Beginning value** 

Factors that Affect the Cost of Money

- Production opportunities
- Time preferences for consumption
- O Risk
- O Inflation

### Interest Rate Levels

#### O Interest Rates as a Function of Supply and Demand



### Interest Rate Levels



## Rate of Return (Interest Rate)



## Determinants of Market Interest Rates



## "Real" versus "Nominal" Rates

- r = the nominal rate of any investment, which might include a risk premium (RP)
- r\* = the real risk-free rate of return, which does not include inflation
- r<sub>RF</sub> = nominal risk-free rate, which includes an inflation premium, IP, that is equal to the *average* inflation rate expected during the life of the investment

$$\circ$$
 r<sub>RF</sub> = r\* + IF

$$\circ$$
 r = r<sub>RF</sub> + RP

### Premiums Added to r\* for Different Types of Debt

- IP = Inflation premium
- O DRP = Default risk premium
- O LP = Liquidity premium
- O MRP = Maturity risk premium

 $r = r_{RF} + [DRP + LP + MRP]$  $r = (r^* + IP) + [DRP + LP + MRP]$ 

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

### Premiums Added to r\* for Different Types of Debt

Short-Term (S-T) Treasury: only IP for S-T inflation
Long-Term (L-T) Treasury: IP for L-T inflation, MRP
S-T corporate: Short-Term IP, DRP, LP
L-T corporate: IP, DRP, MRP, LP

## The Term Structure of Interest Rates

- Term structure—the relationship between interest rates (or yields) and maturities
- Yield curve—a graph of the term structure.

# U.S. Treasury Bond Interest Rates on Different Dates

| Term to         | Interest Rates |               |                |  |  |  |
|-----------------|----------------|---------------|----------------|--|--|--|
| <b>Maturity</b> | July 2006      | February 2007 | September 2008 |  |  |  |
| 3 months        | 5.0%           | 5.2%          | 0.9%           |  |  |  |
| 1 year          | 5.1            | 5.0           | 1.9            |  |  |  |
| 5 years         | 5.1            | 4.7           | 2.9            |  |  |  |
| 10 years        | 5.1            | 4.7           | 3.7            |  |  |  |
| 20 years        | 5.3            | 4.9           | 4.3            |  |  |  |

Source: Federal Reserve, http://www.federalreserve.gov

#### U.S. Treasury Bond Interest Rates on Different Dates (Yield Curves)



# Three Explanations for the Shape of the Yield Curve

- O Liquidity Preference Theory
- O Market Segmentation Theory
- O Expectations Theory

### Liquidity Preference Theory

- Everything else equal, investors (lenders) prefer S-T securities to L-T securities because S-T securities are subject to less interest rate risk, thus are more easily bought and sold in the market.
- As a result, S-T rates should be lower than L-T rates, and the yield curve should be slope upward.

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

## Market Segmentation Theory

- Borrowers and lenders have preferred maturities, generally either S-T or L-T.
- Slope of yield curve depends on supply and demand for funds in both the L-T and S-T markets (curve could be flat, upward, or downward sloping).

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

### Expectations Theory

- Shape of the yield curve depends on investors' expectations about future inflation rates.
- If inflation is expected to increase, S-T rates will be lower than L-T rates—the yield curve will slope upward (a normal yield curve).
- If inflation is expected to decrease, S-T rates will be higher than L-T rates—the yield curve will slope downward (an inverted yield curve).

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

### Forecasting Interest Rates: Expectations Theory

 $\begin{array}{l} \text{Inflation} \\ \text{premium} = \text{IP}_{n} = \frac{\text{Infl}_{1} + \text{Infl}_{2} + \ldots + \text{Infl}_{n}}{n} \\ \text{Infl}_{t} = \text{inflation expected in Year t} \end{array}$ 

### Forecasting Interest Rates: Expectations Theory

Yield (%) on an  $= \frac{R_1 + R_2 + ... + R_n}{n - year bond}$ 

 $R_{t} = one-year interest rate in Year t$  $= (r^{*} + IP_{t}) + [DRP + LP + MRP]$ 

## Forecasting Interest Rates: Example

• Following are investors' inflation expectations for the next three years:

|      | Expected Annua<br>(One-Year) | al Expec<br>Rate f | ted Average Inflation<br>From Jan 2 of Year 1 |
|------|------------------------------|--------------------|-----------------------------------------------|
| Year | Inflation Rate               | to Dec             | . 31 of Indicated Year                        |
| 1    | 2.0%                         | $IP_1 =$           | (2%)/1 = 2.0%                                 |
| 2    | 4.0                          | $IP_2 =$           | (2% + 4%)/2 = 3.0%                            |
| 3    | 6.0                          | $IP_3 = (2\%)$     | 6 + 4% + 6%)/3 = 4.0%                         |

## Forecasting Interest Rates: Example

• Suppose the real risk-free rate, r\*, is 3%:

| Bond<br>Type | Real Risk-Free<br>Rate (r*) | 2 | Inflation Premium<br>$IP_t = Average$<br>Expected Inflation | ſ | Nominal Rate<br>for Each Type<br>of Bond, r <sub>RF</sub> |
|--------------|-----------------------------|---|-------------------------------------------------------------|---|-----------------------------------------------------------|
| 1-year       | 3.0%                        | + | 2.0%                                                        | = | 5.0%                                                      |
| 2-year       | 3.0                         | + | 3.0%                                                        | = | 6.0%                                                      |
| 3-year       | 3.0                         | + | 4.0%                                                        | = | 7.0%                                                      |

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

### Other Factors That Influence Interest Rate Levels

- Federal Reserve Policy
- Federal deficits
- International Business (Foreign Trade Balance)
- O Business Activity

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

## Interest Rate Levels and Stock Prices

- The higher the rate of interest, the lower a firm's profits.
- Interest rates affect the level of economic activity, and economic activity affects corporate profits.

The Cost of Money as a Determinant of Value (Preview of Asset Valuation!)



CF<sub>t</sub> = the cash flow that the asset is expected to generate in Period t

= the cost of funds; the required rate of return