CFIN ${ }^{5}$

CORPORATE FINANCE

Chapter 5 The Cost OF Money (Interest Rates)

Learning Outcomes

LO. 1 Describe the cost of money and factors that affect the cost of money.
LO. 2 Describe how interest rates are determined.
LO. 3 Describe a yield curve and discuss how a yield curve might be used to forecast future interest rates.

Learning Outcomes (cont.)

LO. 4 Discuss how government actions and general business activity affect interest rates.

LO. 5 Describe how changes in interest rates (returns) affect the values of stocks and bonds.

Realized Returns (Yields)

$$
\text { Yield }=\frac{\text { Dollar return }}{\text { Beginning value }}=\frac{\text { Dollar income }+ \text { Capital gains }}{\text { Beginning value }}
$$

$$
=\frac{\text { Dollar income }+(\text { Ending value }- \text { Beginning value })}{\text { Beginning value }}
$$

Factors that Affect the Cost of Money

- Production opportunities
- Time preferences for consumption
o Risk
- Inflation

Interest Rate Levels

- Interest Rates as a Function of Supply and Demand

Interest Rate Levels

Rate of Return (Interest Rate)

Determinants of Market Interest Rates

Rate of

$$
=r=\text { Risk-free rate }+\quad \text { Risk premium }
$$

return

$$
\begin{array}{lll}
= & = & r_{\mathrm{RF}} \\
= & + & \mathrm{RP} \\
= & \mathrm{r}_{\mathrm{RF}} & +[\mathrm{DRP}+\mathrm{LP}+\mathrm{MRP}]
\end{array}
$$

$r=$ Quoted or nominal rate
$r_{\mathrm{RF}}=$ The quoted risk-free rate
$R P=$ Risk premium $=D R P+L P+M R P$

"Real" versus "Nominal" Rates

or = the nominal rate of any investment, which might include a risk premium (RP)
○ $r^{*}=$ the real risk-free rate of return, which does not include inflation

- $r_{\text {RF }}=$ nominal risk-free rate, which includes an inflation premium, IP, that is equal to the average inflation rate expected during the life of the investment
- $r_{R F}=r^{*}+I P$
$o r=r_{R F}+R P$

Premiums Added to r* for Different Types of Debt

- IP = Inflation premium
- DRP = Default risk premium
- LP = Liquidity premium
- MRP = Maturity risk premium
$r=r_{\mathrm{RF}}+[\mathrm{DRP}+\mathrm{LP}+\mathrm{MRP}]$
$r=\left(r^{*}+I P\right)+[D R P+L P+M R P]$

Premiums Added to r* for Different Types of Debt

- Short-Term (S-T) Treasury: only IP for S-T inflation
- Long-Term (L-T) Treasury: IP for L-T inflation, MRP
- S-T corporate: Short-Term IP, DRP, LP
- L-T corporate: IP, DRP, MRP, LP

The Term Structure of Interest Rates

- Term structure-the relationship between interest rates (or yields) and maturities
- Yield curve-a graph of the term structure.

U.S. Treasury Bond Interest Rates on Different Dates

Term to	Interest Rates		
Maturity	July 2006	February 2007	September 2
3 months	5.0%	5.2%	0.9%
1 year	5.1	5.0	1.9
5 years	5.1	4.7	2.9
10 years	5.1	4.7	3.7
20 years	5.3	4.9	4.3

Source: Federal Reserve, http://www.federalreserve.gov

U.S. Treasury Bond Interest Rates on Different Dates (Yield Curves)

Three Explanations for the Shape of the Yield Curve

- Liquidity Preference Theory
- Market Segmentation Theory
o Expectations Theory

Liquidity Preference Theory

o Everything else equal, investors (lenders) prefer S-T securities to L-T securities because S-T securities are subject to less interest rate risk, thus are more easily bought and sold in the market.

- As a result, S-T rates should be lower than LT rates, and the yield curve should be slope upward.

Market Segmentation Theory

o Borrowers and lenders have preferred maturities, generally either S-T or L-T.

- Slope of yield curve depends on supply and demand for funds in both the L-T and S-T markets (curve could be flat, upward, or downward sloping).

Expectations Theory

- Shape of the yield curve depends on investors' expectations about future inflation rates.
- If inflation is expected to increase, S-T rates will be lower than L-T rates-the yield curve will slope upward (a normal yield curve).
- If inflation is expected to decrease, S-T rates will be higher than L-T rates-the yield curve will slope downward (an inverted yield curve).

Forecasting Interest Rates: Expectations Theory

$\begin{aligned} & \text { Inflation } \\ & \text { premium }\end{aligned}=\mathrm{IP}_{\mathrm{n}}=\frac{\operatorname{lnfl}_{1}+\operatorname{Inf|_{2}+\ldots +\text {Inf}_{n}}}{\mathrm{n}}$
 $\operatorname{lnfl}_{\mathrm{t}}=$ inflation expected in Year t

Forecasting Interest Rates: Expectations Theory

Yield (\%) on an $=\underline{R_{1}+R_{2}+\ldots+R_{n}}$ n - year bond n

$$
\begin{aligned}
R_{t} & =\text { one-year interest rate in Year } t \\
& =\left(r^{*}+I P_{t}\right)+[D R P+L P+M R P]
\end{aligned}
$$

Forecasting Interest Rates:
 Example

- Following are investors' inflation expectations for the next three years:

	Expected Annual (One-Year) Inflation Rate	Expected Average Inflation Rate from Jan 2 of Year 1 to Dec. 31 of Indicated Year	
1	2.0%	$\mathrm{IP}_{1}=$	$(2 \%) / 1=2.0 \%$
2	4.0	$\mathrm{IP}_{2}=$	$(2 \%+4 \%) / 2=3.0 \%$
3	6.0	$\mathrm{IP}_{3}=(2 \%+4 \%+6 \%) / 3=4.0 \%$	

Forecasting Interest Rates: Example

- Suppose the real risk-free rate, r^{*}, is 3% :

Bond Type	Real Risk-Free Rate $\left(r^{*}\right)$	Inflation Premium $\mathrm{IP}_{\mathrm{t}}=$ Average Expected Inflation	Nominal Rate for Each Type of Bond, r_{RF}		
1-year	3.0%	+	2.0%	$=$	5.0%
2-year	3.0	+	3.0%	$=$	6.0%
3 -year	3.0	+	4.0%	$=$	7.0%

Other Factors That

 Influence Interest Rate Levels- Federal Reserve Policy
- Federal deficits
- International Business (Foreign Trade Balance)
- Business Activity

Interest Rate Levels and Stock Prices

- The higher the rate of interest, the lower a firm's profits.
- Interest rates affect the level of economic activity, and economic activity affects corporate profits.

The Cost of Money as a Determinant of Value (Preview of Asset Valuation!)

$$
\begin{aligned}
\text { Value of } & \begin{aligned}
\text { an asset } & =\frac{\hat{\mathrm{CF}}_{1}}{(1+\mathrm{r})^{1}}+\frac{\hat{\mathrm{CF}}_{2}}{(1+\mathrm{r})^{2}}+\cdots+\frac{\hat{\mathrm{CF}}_{\mathrm{n}}}{(1+\mathrm{r})^{n}} \\
& =\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\hat{\mathrm{CF}}_{\mathrm{t}}}{(1+\mathrm{r})^{t}}
\end{aligned}
\end{aligned}
$$

$\hat{C F}_{t}=$ the cash flow that the asset is expected to generate in Period t
$r \quad=$ the cost of funds; the required rate of return

